Prediksi Tekanan Darah Berdasarkan Faktor Umur dan BMI dengan Regresi Linear Berganda

Authors

  • Inka Claudya Maharani Universitas Sembilanbelas November Kolaka
  • Siti Nurahmawati Universitas Sembilanbelas November Kolaka
  • Fina Revalina Putri Universitas Sembilanbelas November Kolaka
  • Muh Syaid Fadly Universitas Sembilanbelas November Kolaka

Keywords:

Multiple Linear Regression, Blood Pressure, Age, Body Mass Index, Prediction

Abstract

Blood pressure is a vital health metric affected by multiple factors, such as age and Body Mass Index (BMI). This research seeks to forecast blood pressure utilizing age and BMI through the multiple linear regression technique. The dataset comprises 74 samples, processed with SPSS software to develop the predictive model. The study yielded the regression equation Y = 106.635 + 0.076X₁ + 0.069X₂, with X₁ denoting age and X₂ indicating BMI. The coefficient of determination (R²) of 0.229 signifies that the model accounts for only 22.9% of the variability in blood pressure, with the remaining proportion affected by extraneous factors not addressed in this study. According to the derived model, a 27-year-old individual with a BMI of 75 is anticipated to have a blood pressure of 113.86 mmHg. The results indicate that while age and BMI affect blood pressure, other variables like food, physical activity, stress, and medical history must be taken into account to enhance predictive precision. Consequently, additional study with more sophisticated models is advised to yield more precise and representative outcomes

References

[1] Y. Ramadhan, A. Faqih, and G. Dwilestari, “Prediksi Penjualan Handphone di Toko X menggunakan Algoritma Regresi Linear,” J. Inform. Terpadu, vol. 9, no. 1, pp. 40–44, 2023, doi: 10.54914/jit.v9i1.692.

[2] A. N. Maharadja, I. Maulana, and B. A. Dermawan, “Penerapan Metode Regresi Linear Berganda untuk Prediksi Kerugian Negara Berdasarkan Kasus Tindak Pidana Korupsi,” J. Appl. Informatics Comput., vol. 5, no. 1, pp. 95–102, 2021, doi: 10.30871/jaic.v5i1.3184.

[3] D. Wulandari and R. Rumini, “Pemodelan dan Prediksi Produksi Padi Menggunakan Regresi Linear,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 12, no. 4, pp. 1010–1019, 2023, doi: 10.30591/smartcomp.v12i4.5905.

[4] G. N. Ayuni and D. Fitrianah, “Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti pada PT XYZ,” J. Telemat., vol. 14, no. 2, pp. 79–86, 2020, doi: 10.61769/telematika.v14i2.321.

[5] W. Putri, M. Swari, and R. Mumpuni, “PENERAPAN METODE REGRESI LINEAR UNTUK PREDIKSI PENJUALAN SUKU CADANG,” JINTEKS (Jurnal Inform. Teknol. dan Sains), vol. 5, no. 4, pp. 679–685, 2023.

[6] H. Husdi and H. Dalai, “Penerapan Metode Regresi Linear Untuk Prediksi Jumlah Bahan Baku Produksi Selai Bilfagi,” J. Inform., vol. 10, no. 2, pp. 129–135, 2023, doi: 10.31294/inf.v10i2.14129.

[7] R. Oktaviani, D. M. Midyanti, and S. Bahri, “Implementasi Metode Regresi Linear Untuk Prediksi Kebutuhan Energi Listrik Pln Rayon Sintang Berbasis Website,” Coding J. Komput. dan Apl., vol. 9, no. 01, p. 119, 2021, doi: 10.26418/coding.v9i01.45868.

[8] W. Kurniawan, N. Baihaqi, and I. Ali, “Multi Regresi Linear Untuk Prediksi Kepadatan Penduduk Berdasarkan Variable Kependudukan Di Indonesia,” J. Ris. Inform. dan Teknol. Inf., vol. 1, no. 2, pp. 65–69, 2024, doi: 10.58776/jriti.v1i2.67.

[9] M. M. Dewi, L. D. Farida, and M. Nuraminudin, “Regresi Linier untuk Prediksi Konsumsi dan Produksi Daging Unggas (Studi Kasus : Provinsi Jawa Barat),” J. Inf. Syst. Manag., vol. 4, no. 2, pp. 81–85, 2023.

[10] M. Ramadhani, A. Homaidi, and A. Lutfi, “PREDIKSI INFLASI BAHAN POKOK MENGGUNAKAN METODE REGRESI LINEAR,” J. Tek. Elektro dan Inform., vol. 19, no. 2, pp. 191–196, 2024.

[11] W. Andriani, Gunawan, and A. E. Prayoga, “Prediksi Nilai Emas Menggunakan Algoritma Regresi Linear,” J. Ilm. Inform. Komput., vol. 28, no. 1, pp. 27–35, 2023, doi: 10.35760/ik.2023.v28i1.8096.

Downloads

Published

2025-03-04

Issue

Section

Articles